Cell-surface estrogen receptors mediate calcium-dependent nitric oxide release in human endothelia.

نویسندگان

  • G B Stefano
  • V Prevot
  • J C Beauvillain
  • P Cadet
  • C Fimiani
  • I Welters
  • G L Fricchione
  • C Breton
  • P Lassalle
  • M Salzet
  • T V Bilfinger
چکیده

BACKGROUND Although estrogen replacement therapy has been associated with reduction of cardiovascular events in postmenopausal women, the mechanism for this benefit remains unclear. Because nitric oxide (NO) is considered an important endothelium-derived relaxing factor and may function to protect blood vessels against atherosclerotic development, we investigated the acute effects of physiological levels of estrogen on NO release from human internal thoracic artery endothelia and human arterial endothelia in culture. METHODS AND RESULTS We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase activity in human endothelial cells by acting on a cell-surface receptor. NO release was measured in real time with an amperometric probe. 17beta-Estradiol exposure to internal thoracic artery endothelia and human arterial endothelia in culture stimulated NO release within seconds in a concentration-dependent manner. 17beta-Estradiol conjugated to bovine serum albumin also stimulated NO release, suggesting action through a cell-surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized this action. We further showed with the use of dual emission microfluorometry that 17beta-estradiol-stimulated release of endothelial NO was dependent on the initial stimulation of intracellular calcium transients. CONCLUSIONS Physiological doses of estrogen immediately stimulate NO release from human endothelial cells through activation of a cell-surface estrogen receptor that is coupled to increases in intracellular calcium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor.

We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase activity in human granulocytes by acting on a cell surface estrogen receptor (ER). The release of nitric oxide was measured in real time with an amperometric probe. Exposure of granulocytes to 17beta-estradiol stimulated NO release within seconds in a concentration-dependent manner. The NO release was a...

متن کامل

Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta...

متن کامل

Calcium regulates estrogen increase in permeability of cultured CaSki epithelium by eNOS-dependent mechanism.

Estrogen increases baseline transepithelial permeability across CaSki cultures and augments the increase in permeability in response to hypertonic gradients. In estrogen-treated cells, lowering cytosolic calcium abrogated the hypertonicity-induced augmented increase in permeability and decreased baseline permeability to a greater degree than in estrogen-deprived cells. Steady-state levels of cy...

متن کامل

17-β estradiol down regulates ganglionic microglial cells via nitric oxide release: Presence of an estrogen receptor β transcript

OBJECTIVES: In earlier studies we have demonstrated that 17-β-estradiol and an estrogen cell surface receptor can be found on various human cells where they are coupled to nitric oxide release. We also demonstrated the presence of estrogen signaling in Mytilus edulis ganglia. In the present report, we sought to determine a function for these ganglionic estrogen receptors, transcending a reprodu...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 101 13  شماره 

صفحات  -

تاریخ انتشار 2000